Changes in the Soluble and Insoluble Compounds of Shelf-Stable Orange Juice in Relation to Non-Enzymatic Browning during Storage
Author(s) -
Huong Tran Thuy Pham,
Mona Bazmawe,
Biniam Kebede,
Carolien Buvé,
Marc Hendrickx,
Ann Van Loey
Publication year - 2019
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/acs.jafc.9b05014
Subject(s) - chemistry , browning , orange juice , pectin , monosaccharide , food science , furfural , ethanol , sucrose , orange (colour) , pulp (tooth) , ascorbic acid , chromatography , hydrolysis , solubility , biochemistry , organic chemistry , catalysis , medicine , pathology
For the first time in literature, this study revealed the participation of polymeric components of orange juice cloud and pulp (such as proteins, arabinogalactan proteins, or protein-pectin complexes) during nonenzymatic browning. In a quest to better understand the nonenzymatic browning of shelf-stable orange juice during storage, the juice was fractionated into different fractions depending on the solubility in water/ethanol and the obtained fractions were characterized. The results showed that brown compounds that were formed during storage of orange juice were distributed over water insoluble (pulp), ethanol insoluble (cloud), and ethanol soluble (serum) fractions. In the ethanol insoluble fraction, the brown compounds are hypothesized to be associated with proteins, arabinogalactan proteins, and/or protein-pectin complexes of this fraction without significantly changing their molecular weight distributions, monosaccharide compositions, and protein contents. The changes in the ethanol soluble fraction including ascorbic acid degradation, acid-catalyzed hydrolysis of sucrose, and formation of furfural and 5-hydroxymethylfurfural were highly correlated to the browning development of the juice during storage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom