z-logo
open-access-imgOpen Access
Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation
Author(s) -
Diogo Carregosa,
Rafael Carecho,
Inês Figueira,
Cláudia Nunes dos Santos
Publication year - 2019
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/acs.jafc.9b02155
Subject(s) - neuroinflammation , polyphenol , phenols , pharmacology , effector , bioavailability , medicine , chemistry , biology , disease , biochemistry , antioxidant
Age-associated pathophysiological changes such as neurodegenerative diseases are multifactorial conditions with increasing incidence and no existing cure. The possibility of altering the progression and development of these multifactorial diseases through diet is an attractive approach with increasing supporting data. Epidemiological and clinical studies have highlighted the health potential of diets rich in fruits and vegetables. Such food sources are rich in (poly)phenols, natural compounds increasingly associated with health benefits, having the potential to prevent or retard the development of various diseases. However, absorption and the blood concentration of (poly)phenols is very low when compared with their corresponding (poly)phenolic metabolites. Therefore, these serum-bioavailable metabolites are much more promising candidates to overcome cellular barriers and reach target tissues, such as the brain. Bearing this in mind, it will be reviewed that the molecular mechanisms underlying (poly)phenolic metabolites effects, range from 0.1 to <50 μM and their role on neuroinflammation, a central hallmark in neurodegenerative diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom