Sulfoglucosides as Novel Modified Forms of the Mycotoxins Alternariol and Alternariol Monomethyl Ether
Author(s) -
Sebastian T. Soukup,
Beate N. Kohn,
Erika Pfeiffer,
Rolf Geisen,
Manfred Metzler,
Mirko Bunzel,
Sabine E. Kulling
Publication year - 2016
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/acs.jafc.6b03120
Subject(s) - alternariol , mycotoxin , sulfate , chemistry , alternaria alternata , ether , food science , botany , organic chemistry , biology
The mycotoxins alternariol and alternariol-9-O-methyl ether have recently been reported to be extensively conjugated with glucose and malonyl glucose in tobacco suspension cells. However, only trace amounts of glucosylated conjugates were detected in tomatoes inoculated with Alternaria alternata in the present study. Instead, mostly sulfate conjugates were observed. In studies using cultures of A. alternata and incubations of alternariol and alternariol-9-O-methyl ether with tomato tissue in the absence of the fungus, it was clarified that sulfate conjugates were produced by the fungus, whereas tomato tissues converted alternariol and alternariol-9-O-methyl ether to glucosylated metabolites. Alternariol-3-sulfate, alternariol-9-sulfate, and alternariol-9-O-methyl ether-3-sulfate were unambiguously identified as fungal metabolites using MS and 1 H and 13 C NMR spectroscopy. When these sulfate conjugates were incubated with tobacco suspension cells or ex planta tomato tissues, three sulfoglucosides of alternariol and one sulfoglucoside of alternariol-9-O-methyl ether were formed. Using NMR spectroscopy, the chemical structures of alternariol-3-sulfate-9-glucoside, alternariol-9-sulfate-3-glucoside, and alternariol-9-O-methyl ether-3-sulfate-7-glucoside were established. These conjugates were also detected in the A. alternata-inoculated tomato. This is the first report on a mixed sulfate/glucoside diconjugate of a mycotoxin. Diconjugates of this novel type may be formed by all mycotoxins and their phase I metabolites with two or more hydroxyl groups and should be taken into account in the future analysis of modified mycotoxins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom