z-logo
open-access-imgOpen Access
Two Peptides from Soy β-Conglycinin Induce a Hypocholesterolemic Effect in HepG2 Cells by a Statin-Like Mechanism: Comparative in Vitro and in Silico Modeling Studies
Author(s) -
Carmen Lammi,
Chiara Zai,
Anna Arnoldi,
Giulio Vistoli
Publication year - 2015
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/acs.jafc.5b03497
Subject(s) - peptide , in silico , statin , soy protein , in vitro , reductase , low density lipoprotein , chemistry , lipoprotein , biochemistry , cholesterol , ldl receptor , pharmacology , enzyme , biology , gene
Two peptides from soybean β-conglycinin, i.e., YVVNPDNDEN (peptide 2) and YVVNPDNNEN (peptide 3), are known to be absorbed by human enterocytes. The former is a fragment of LRVPAGTTFYVVNPDNDENLRMIA (peptide 1), previously shown to increase the low-density lipoprotein (LDL) uptake and degradation in hepatocytes. Research carried out in silico on their interactions with the catalytic site of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCoAR) demonstrated that they behave as competitive inhibitors of HMGCoAR activity with a statin-like mechanism, confirmed by direct inhibition experiments. Research in HepG2 cells aimed at investigating the effects of these peptides on cholesterol metabolism showed that compared to mock treatment peptide 2 at 350 μM up-regulates the mature SREBP2 protein level by 134.0 ± 10.5%, increases the LDLR protein level by 152.0 ± 20.0%, and enhances the HMGCoAR protein production by 171 ± 29.9%, whereas peptide 3 up-regulates the mature SREBP2 protein level by 158.0 ± 9.2%, increases the LDL level 164.0 ± 17.9%, and induces a HMGCoAR protein increase by 170 ± 50.0%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom