Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes
Author(s) -
Javier Marhuenda,
Sónia Medina,
Alexandra Díaz-Castro,
Pedro Martı́nez-Hernández,
Simón Arina,
Pilar Zafrilla,
Juana Mulero,
Camille Oger,
JeanMarie Galano,
Thierry Durand,
Federico Ferreres,
Ángel GilIzquierdo
Publication year - 2015
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/acs.jafc.5b03365
Subject(s) - wine , chemistry , winemaking , food science , viticulture , wine color , oenology , aging of wine
Wine is one of the most consumed alcoholic beverages around the world. Red wine has demonstrated several benefits for health maintenance. One group of potential anti-inflammatory compounds is the phytoprostanes, oxidative degradation products of linolenic acid. The aim of the present study was to measure, for the first time, the phytoprostane content in wine and must by an UHPLC-QqQ-MS/MS method after solid-phase extraction. The data showed two predominant classes of phytoprostanes: F1- and D1-phytoprostane series. In wines, the total phytoprostane concentration ranged from 134.1 ± 2.3 to 216.2 ± 3.06 ng/mL. Musts showed concentrations between 21.4 ± 0.8 and 447.1 ± 15.8 ng/mL. The vinification and aging procedures for the production of wine seem to influence the final phytoprostane levels in red wine and to modify the phytoprostane profile. The high concentrations observed and previous reports on anti-inflammatory effects of phytoprostanes make further research on the benefits of phytoprostanes more important.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom