
Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results
Author(s) -
Amandine Boulmier,
Xinxin Feng,
Olivier Oms,
Pierre Mialane,
Éric Rivière,
Christopher J. Shin,
Jiaqi Yao,
Toru Kubo,
Takeshi Furuta,
Eric Oldfield,
Anne Dolbecq
Publication year - 2017
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/acs.inorgchem.7b01114
Subject(s) - chemistry , bisphosphonate , in vivo , in vitro , polyoxometalate , growth inhibition , ic50 , ligand (biochemistry) , stereochemistry , cancer research , receptor , biochemistry , medicine , osteoporosis , microbiology and biotechnology , biology , catalysis
We synthesized a series of polyoxometalate-bisphosphonate complexes containing Mo VI O 6 octahedra, zoledronate, or an N-alkyl (n-C 6 or n-C 8 ) zoledronate analogue, and in two cases, Mn as a heterometal. Mo 6 L 2 (L = Zol, ZolC 6 , ZolC 8 ) and Mo 4 L 2 Mn (L = Zol, ZolC 8 ) were characterized by using single-crystal X-ray crystallography and/or IR spectroscopy, elemental and energy dispersive X-ray analysis and 31 P NMR. We found promising activity against human nonsmall cell lung cancer (NCI-H460) cells with IC 50 values for growth inhibition of ∼5 μM per bisphosphonate ligand. The effects of bisphosphonate complexation on IC 50 decreased with increasing bisphosphonate chain length: C 0 ≈ 6.1×, C 6 ≈ 3.4×, and C 8 ≈ 1.1×. We then determined the activity of one of the most potent compounds in the series, Mo 4 Zol 2 Mn(III), against SK-ES-1 sarcoma cells in a mouse xenograft system finding a ∼5× decrease in tumor volume than found with the parent compound zoledronate at the same compound dosing (5 μg/mouse). Overall, the results are of interest since we show for the first time that heteropolyoxomolybdate-bisphosphonate hybrids kill tumor cells in vitro and significantly decrease tumor growth, in vivo, opening up new possibilities for targeting both Ras as well as epidermal growth factor receptor driven cancers.