Life Cycle Assessment of Bitcoin Mining
Author(s) -
Susanne Köhler,
Massimo Pizzol
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b05687
Subject(s) - carbon footprint , cryptocurrency , life cycle assessment , footprint , consumption (sociology) , energy consumption , environmental economics , production (economics) , environmental impact assessment , ecological footprint , environmental science , natural resource economics , computer science , economics , engineering , sustainability , computer security , greenhouse gas , geography , ecology , social science , macroeconomics , archaeology , sociology , electrical engineering , biology
This study estimates the environmental impact of mining Bitcoin, the most well-known blockchain-based cryptocurrency, and contributes to the discussion on the technology's supposedly large energy consumption and carbon footprint. The lack of a robust methodological framework and of accurate data on key factors determining Bitcoin's impact have so far been the main obstacles in such an assessment. This study applied the well-established Life Cycle Assessment methodology to an in-depth analysis of drivers of past and future environmental impacts of the Bitcoin mining network. It was found that, in 2018, the Bitcoin network consumed 31.29 TWh with a carbon footprint of 17.29 MtCO 2 -eq, an estimate that is in the lower end of the range of results from previous studies. The main drivers of such impact were found to be the geographical distribution of miners and the efficiency of the mining equipment. In contrast to previous studies, it was found that the service life, production, and end-of-life of such equipment had only a minor contribution to the total impact, and that while the overall hashrate is expected to increase, the energy consumption and environmental footprint per TH mined is expected to decrease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom