z-logo
open-access-imgOpen Access
Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model
Author(s) -
Qixing Zhou,
Zongkai Yue,
Qingzhao Li,
Ruiren Zhou,
Lu Liu
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b03581
Subject(s) - reproductive toxicity , oxidative stress , endoplasmic reticulum , apoptosis , toxicity , chemistry , andrology , downregulation and upregulation , cytoplasm , microbiology and biotechnology , medicine , biology , biochemistry , gene
PbSe nanoparticles (PbSe-NPs) attract ever-growing interest owing to their great promise in various fields. However, potential toxic effects of PbSe-NPs on male reproductive systems have not been reported. This study aimed to determine whether early-life exposure to PbSe-NPs could affect male reproductive systems and other related health effects in rats. The male rats were intraperitoneally injected with 10 mg/kg/week PbSe-NPs for 60 days followed by a series of reproductive-related analyses. We found that the nanoparticles could accumulate in testes in a size-dependent manner. Furthermore, accumulation of PbSe-NPs resulted in oxidative stress and disorder of normal serum sex hormones. Endoplasmic reticulum and mitochondria-mediated cell apoptosis were triggered via oxidative stress, as shown by upregulation of cytoplasmic Cyt-c, Bax, cleaved Caspase-3, GRP78, and Caspase-12. Notably, PbSe-NP administration led to reduction in the quantity and quality of sperm, which caused a great fertility decrease. In contrast, released Pb 2+ from PbSe-NPs did not result in any testis toxicity and fertility declines. These results demonstrate that PbSe-NPs could cause severe reproductive toxicity in a size-dependent manner and these toxic effects should be responsible for PbSe-NPs themselves rather than released Pb 2+ . The application of PbSe-NPs might be a double-edged sword, and corresponding measures should be taken before use.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom