z-logo
open-access-imgOpen Access
Isotopic Characterization (2H, 13C, 37Cl, 81Br) of Abiotic Degradation of Methyl Bromide and Methyl Chloride in Water and Implications for Future Studies
Author(s) -
Axel Horst,
Magali Bonifacie,
Gérard Bardoux,
Hans H. Richnow
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b02165
Subject(s) - chemistry , bromine , kinetic isotope effect , halide , bromide , stable isotope ratio , isotope analysis , chloride , chlorine , environmental chemistry , isotope fractionation , inorganic chemistry , radiochemistry , deuterium , fractionation , organic chemistry , geology , physics , oceanography , quantum mechanics
Methyl bromide (CH 3 Br) and methyl chloride (CH 3 Cl) significantly contribute to stratospheric ozone depletion. The atmospheric budgets of both compounds are unbalanced with known degradation processes outweighing known emissions. Stable isotope analysis may be capable to identify and quantify emissions and to achieve a balanced budget. Degradation processes do, however, cause isotope fractionation in methyl halides after emission and hence knowledge about these processes is a crucial prerequisite for any isotopic mass balance approach. In the current study, triple-element isotope analysis ( 2 H, 13 C, 37 Cl/ 81 Br) was applied to investigate the two main abiotic degradation processes of methyl halides (CH 3 X) in fresh and seawater: hydrolysis and halide exchange. For CH 3 Br, nucleophilic attack by both H 2 O and Cl - caused significant primary carbon and bromine isotope effects accompanied by a secondary inverse hydrogen isotope effect. For CH 3 Cl only nucleophilic substitution by H 2 O was observed at significant rates causing large primary carbon and chlorine isotope effects and a secondary inverse hydrogen isotope effect. Observed dual-element isotope ratios differed slightly from literature values for microbial degradation in water and hugely from radical reactions in the troposphere. This bodes well for successfully distinguishing and quantifying degradation processes in atmospheric methyl halides using triple-element isotope analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom