z-logo
open-access-imgOpen Access
Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants
Author(s) -
Jonghun Lim,
Yang Yang,
Michael R. Hoffmann
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b01449
Subject(s) - catalysis , cobalt , chemistry , carbon black , leaching (pedology) , inorganic chemistry , electron transfer , chemical engineering , photochemistry , organic chemistry , soil water , natural rubber , environmental science , soil science , engineering
Cobalt-mediated activation of peroxymonosulfate (PMS) has been widely investigated for the oxidation of organic pollutants. Herein, we employ cobalt-doped Black TiO 2 nanotubes (Co-Black TNT) for the efficient, stable, and reusable activator of PMS for the degradation of organic pollutants. Co-Black TNTs induce the activation of PMS by itself and stabilized oxygen vacancies that enhance the bonding with PMS and provide catalytic active sites for PMS activation. A relatively high electronic conductivity associated with the coexistence of Ti 4+ and Ti 3+ in Co-Black TNT enables an efficient electron transfer between PMS and the catalyst. As a result, Co-Black TNT is an effective catalyst for PMS activation, leading to the degradation of selected organic pollutants when compared to other TNTs (TNT, Co-TNT, and Black TNT) and other Co-based materials (Co 3 O 4 , Co-TiO 2 , CoFe 2 O 4 , and Co 3 O 4 /rGO). The observed organic compound degradation kinetics are retarded in the presence of methanol and natural organic matter as sulfate radical scavengers. These results demonstrate that sulfate radical is the primary oxidant generated via PMS activation on Co-Black TNT. The strong interaction between Co and TiO 2 through Co-O-Ti bonds and rapid redox cycle of Co 2+ /Co 3+ in Co-Black TNT prevents cobalt leaching and enhances catalyst stability over a wide pH range and repetitive uses of the catalyst. Electrode-supported Co-Black TNT facilitates the recovery of the catalyst from the treated water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom