z-logo
open-access-imgOpen Access
Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles
Author(s) -
Di Wu,
Fengdi Guo,
Frank R. Field,
Robert De Kleine,
Hyung Chul Kim,
Timothy J. Wallington,
Randolph Kirchain
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b00648
Subject(s) - electrification , greenhouse gas , electric light , environmental science , life cycle assessment , battery electric vehicle , automotive engineering , battery (electricity) , engineering , electricity , power (physics) , ecology , economics , physics , macroeconomics , quantum mechanics , production (economics) , electrical engineering , biology
Electrification and lightweighting technologies are important components of greenhouse gas (GHG) emission reduction strategies for light-duty vehicles. Assessments of GHG emissions from light-duty vehicles should take a cradle-to-grave life cycle perspective and capture important regional effects. We report the first regionally explicit (county-level) life cycle assessment of the use of lightweighting and electrification for light-duty vehicles in the U.S. Regional differences in climate, electric grid burdens, and driving patterns compound to produce significant regional heterogeneity in the GHG benefits of electrification. We show that lightweighting further accentuates these regional differences. In fact, for the midsized cars considered in our analysis, model results suggest that aluminum lightweight vehicles with a combustion engine would have similar emissions to hybrid electric vehicles (HEVs) in about 25% of the counties in the US and lower than battery electric vehicles (BEVs) in 20% of counties. The results highlight the need for a portfolio of fuel efficient offerings to recognize the heterogeneity of regional climate, electric grid burdens, and driving patterns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom