z-logo
open-access-imgOpen Access
Metabolomics of Children and Adolescents Exposed to Industrial Carcinogenic Pollutants
Author(s) -
Chi-Hsin S. Chen,
Tien-Chueh Kuo,
HanChun Kuo,
Yufeng Jane Tseng,
ChingHua Kuo,
TzuHsuen Yuan,
ChangChuan Chan
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b00392
Subject(s) - carcinogen , chemistry , metabolomics , glutathione , purine metabolism , pollutant , oxidative stress , environmental chemistry , metabolism , purine , physiology , biochemistry , biology , chromatography , organic chemistry , enzyme
Studies on metabolomes of carcinogenic pollutants among children and adolescents are limited. We aim to identify metabolic perturbations in 107 children and adolescents (aged 9-15) exposed to multiple carcinogens in a polluted area surrounding the largest petrochemical complex in Taiwan. We measured urinary concentrations of eight carcinogen exposure biomarkers (heavy metals and polycyclic aromatic hydrocarbons (PAHs) represented by 1-hydroxypyrene), and urinary oxidative stress biomarkers and serum acylcarnitines as biomarkers of early health effects. Serum metabolomics was analyzed using a liquid chromatography mass spectrometry-based method. Pathway analysis and "meet-in-the-middle" approach were applied to identify potential metabolites and biological mechanisms linking carcinogens exposure with early health effects. We found 10 potential metabolites possibly linking increased exposure to IARC group 1 carcinogens (As, Cd, Cr, Ni) and group 2 carcinogens (V, Hg, PAHs) with elevated oxidative stress and deregulated serum acylcarnitines, including inosine monophosphate and adenosine monophosphate (purine metabolism), malic acid and oxoglutaric acid (citrate cycle), carnitine (fatty acid metabolism), and pyroglutamic acid (glutathione metabolism). Purine metabolism was identified as the possible mechanism affected by children and adolescents' exposure to carcinogens. These findings contribute to understanding the health effects of childhood and adolescence exposure to multiple industrial carcinogens during critical periods of development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom