Tissue-Specific Accumulation, Sexual Difference, and Maternal Transfer of Chlorinated Paraffins in Black-Spotted Frogs
Author(s) -
Xinyu Du,
Bo Yuan,
Yihui Zhou,
Ziye Zheng,
Yan Wu,
Yanling Qiu,
Jianfu Zhao,
Ge Yin
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b06350
Subject(s) - chlorinated paraffins , congener , lipophilicity , environmental chemistry , amphibian , biology , toxicology , chemistry , wet weight , zoology , ecology , biochemistry , endocrinology , organic chemistry
The restriction on usage of short-chain chlorinated paraffins (SCCPs) under Stockholm Convention may promote the production and application of medium chain chlorinated paraffins (MCCPs) and long chain chlorinated paraffins (LCCPs) as substitutes. This study focused on the tissue-specific exposure to SCCPs, MCCPs, and LCCPs in black-spotted frog, a prevalent amphibian species in the Yangtze River Delta, China. The total CP concentrations in frog liver, muscle, and egg samples ranged of 35-1200, 6.3-97, and 6.8-300 ng/g wet weight (ww), respectively. Livers and eggs contained primary SCCPs (on average 78%) while MCCPs (43%) together with SCCPs (41%) were dominant in muscles. A significantly negative correlation was observed between hepatosomatic index and CPs concentration in liver ( p < 0.01), indicating that CP exposure may lower survival rates of frogs by suppressing the energy storage in liver. Additionally, maternal transfer, an important uptake pathway for CPs, was evaluated for the first time by calculating the ratios of CP levels in eggs to those in their paired liver tissues. The ratio of egg to liver for CP congener groups raised with the increasing of log K ow values, indicating mother to egg transport of CPs was related to the lipophilicity of the chemicals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom