z-logo
open-access-imgOpen Access
Assessing the Lead Solubility Potential of Untreated Groundwater of the United States
Author(s) -
Bryant C. Jurgens,
David L. Parkhurst,
Kenneth Belitz
Publication year - 2019
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b04475
Subject(s) - groundwater , environmental chemistry , calcite , solubility , metal , environmental science , chemistry , apatite , dissolution , contamination , mineral , mineralogy , geology , ecology , geotechnical engineering , organic chemistry , biology
In the U.S., about 44 million people rely on self-supplied groundwater for drinking water. Because most self-supplied homeowners do not treat their water to control corrosion, drinking water can be susceptible to lead (Pb) contamination from metal plumbing. To assess the types and locations of susceptible groundwater, a geochemical reaction model that included pure Pb minerals and solid solutions of calcite (Ca x Pb 1- x CO 3 ) and apatite [Ca x Pb 5-x (PO 4 ) 3 (OH; Cl; F)] was developed to estimate the lead solubility potential (LSP) for over 8300 untreated groundwater samples collected from domestic and public-supply sites between 2000 and 2016 in the U.S. The LSP is the calculated amount of Pb metal that could dissolve at 25 °C before a Pb-bearing mineral precipitates. About 33% of untreated groundwater samples had LSP greater than 15 μg/L-the USEPA action level for dissolved plus particulate forms of Pb. Five percent of samples had high LSP (above 300 μg/L) and tended to occur in the eastern and southeastern U.S. Measured Pb concentrations above 15 μg/L were rarely detected (<1%) but always coincided with high LSP values. Future work will provide a better understanding of the relation between water chemistry, Pb-mineral formation, and dissolved Pb concentrations in tap water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom