Mapping Air Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression
Author(s) -
Kyle P. Messier,
Sarah Chambliss,
Shahzad Gani,
Ramón A. Alvarez,
Michael Bräuer,
Jonathan J. Choi,
Steven P. Hamburg,
Jules Kerckhoffs,
B. W. LaFranchi,
Melissa M. Lunden,
Julian Marshall,
Christopher J. Portier,
Ananya Roy,
Adam A. Szpiro,
Roel Vermeulen,
Joshua S. Apte
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b03395
Subject(s) - kriging , environmental science , air quality index , air pollution , covariate , regression analysis , spatial analysis , pollution , computer science , statistics , meteorology , remote sensing , geography , mathematics , machine learning , ecology , chemistry , organic chemistry , biology
Air pollution measurements collected through systematic mobile monitoring campaigns can provide outdoor concentration data at high spatial resolution. We explore approaches to minimize data requirements for mapping a city's air quality using mobile monitors with "data-only" versus predictive modeling approaches. We equipped two Google Street View cars with 1-Hz instruments to collect nitric oxide (NO) and black carbon (BC) measurements in Oakland, CA. We explore two strategies for efficiently mapping spatial air quality patterns through Monte Carlo analyses. First, we explore a "data-only" approach where we attempt to minimize the number of repeated visits needed to reliably estimate concentrations for all roads. Second, we combine our data with a land use regression-kriging (LUR-K) model to predict at unobserved locations; here, measurements from only a subset of roads or repeat visits are considered. Although LUR-K models did not capture the full variability of on-road concentrations, models trained with minimal data consistently captured important covariates and general spatial air pollution trends, with cross-validation R 2 for log-transformed NO and BC of 0.65 and 0.43. Data-only mapping performed poorly with few (1-2) repeated drives but obtained better cross-validation R 2 han the LUR-K approach within 4 to 8 repeated drive days per road segment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom