Fresh and Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel, and CNG
Author(s) -
Ågot K. Watne,
Magda Psichoudaki,
Evert Ljungström,
Michael Le Breton,
Mattias Hallquist,
Martin Jerksjö,
Henrik Fallgren,
Sara Jütterström,
Åsa M. Hallquist
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b01394
Subject(s) - biodiesel , diesel fuel , environmental science , waste management , biofuel , transit (satellite) , compressed natural gas , ultra low sulfur diesel , automotive engineering , engineering , public transport , chemistry , mechanical engineering , biochemistry , catalysis
The potential effect of changing to a nonfossil fuel vehicle fleet was investigated by measuring primary emissions (by extractive sampling of bus plumes) and secondary mass formation, using a Gothenburg Potential Aerosol Mass (Go:PAM) reactor, from 29 in-use transit buses. Regarding fresh emissions, diesel (DSL) buses without a diesel particulate filter (DPF) emitted the highest median mass of particles, whereas compressed natural gas (CNG) buses emitted the lowest ( Md EF PM 514 and 11 mg kg fuel -1 , respectively). Rapeseed methyl ester (RME) buses showed smaller Md EF PM and particle sizes than DSL buses. DSL (no DPF) and hybrid-electric RME (RME HEV ) buses exhibited the highest particle numbers ( Md EF PN 12 × 10 14 # kg fuel -1 ). RME HEV buses displayed a significant nucleation mode ( D p < 20 nm). EF PN of CNG buses spanned the highest to lowest values measured. Low Md EF PN and Md EF PM were observed for a DPF-equipped DSL bus. Secondary particle formation resulting from exhaust aging was generally important for all the buses (79% showed an average EF PM:AGED /EF PM:FRESH ratio >10) and fuel types tested, suggesting an important nonfuel dependent source. The results suggest that the potential for forming secondary mass should be considered in future fuel shifts, since the environmental impact is different when only considering the primary emissions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom