z-logo
open-access-imgOpen Access
Combining Measurements from Mobile Monitoring and a Reference Site To Develop Models of Ambient Ultrafine Particle Number Concentration at Residences
Author(s) -
Matthew C. Simon,
Allison P. Patton,
Ele. Naumova,
Jonathan I. Levy,
Prashant Kumar,
Doug Brugge,
John L. Durant
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b00292
Subject(s) - mean squared error , ultrafine particle , environmental science , statistics , standard deviation , regression analysis , proxy (statistics) , meteorology , particle number , atmospheric sciences , mathematics , geography , engineering , geology , physics , plasma , quantum mechanics , chemical engineering
Significant spatial and temporal variation in ultrafine particle (UFP; <100 nm in diameter) concentrations creates challenges in developing predictive models for epidemiological investigations. We compared the performance of land-use regression models built by combining mobile and stationary measurements (hybrid model) with a regression model built using mobile measurements only (mobile model) in Chelsea and Boston, MA (USA). In each study area, particle number concentration (PNC; a proxy for UFP) was measured at a stationary reference site and with a mobile laboratory driven along a fixed route during an ∼1-year monitoring period. In comparing PNC measured at 20 residences and PNC estimates from hybrid and mobile models, the hybrid model showed higher Pearson correlations of natural log-transformed PNC ( r = 0.73 vs 0.51 in Chelsea; r = 0.74 vs 0.47 in Boston) and lower root-mean-square error in Chelsea (0.61 vs 0.72) but no benefit in Boston (0.72 vs 0.71). All models overpredicted log-transformed PNC by 3-6% at residences, yet the hybrid model reduced the standard deviation of the residuals by 15% in Chelsea and 31% in Boston with better tracking of overnight decreases in PNC. Overall, the hybrid model considerably outperformed the mobile model and could offer reduced exposure error for UFP epidemiology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom