Smartphone-Based in-Gel Loop-Mediated Isothermal Amplification (gLAMP) System Enables Rapid Coliphage MS2 Quantification in Environmental Waters
Author(s) -
Xiao Huang,
Xingyu Lin,
Katharina Urmann,
Lijie Li,
Xing Xie,
Sunny C. Jiang,
Michael R. Hoffmann
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b00241
Subject(s) - coliphage , bacteriophage ms2 , amplicon , loop mediated isothermal amplification , chromatography , salmonella , chemistry , microbiology and biotechnology , virus quantification , wastewater , escherichia coli , biology , bacteria , polymerase chain reaction , virus , virology , bacteriophage , biochemistry , environmental science , dna , environmental engineering , genetics , gene
Model coliphages (e.g., ΦX174, MS2, and PRD1) have been widely used as surrogates to study the fate and transport of pathogenic viruses in the environment and during wastewater treatment. Two groups of coliphages (F-specific and somatic) are being explored as indicators of viral fecal pollution in ambient water. However, the detection and quantification of coliphages still largely rely on time-consuming culture-based plaque assays. In this study, we developed an in-gel loop-mediated isothermal amplification (gLAMP) system enabling coliphage MS2 quantification within 30 min using standard laboratory devices. Viral particles (MS2) were immobilized with LAMP reagents in polyethylene glycol hydrogel, and then viral RNAs were amplified through a LAMP reaction. Due to the restriction effect of the hydrogel matrix, one viral particle would only produce one amplicon dot. Therefore, the sample virus concentrations can be determined based on the number of fluorescent amplicon dots using a smartphone for imaging. The method was validated by using artificially spiked and naturally contaminated water samples. gLAMP results were shown to correlate well with plaque assay counts ( R 2 = 0.984, p < 0.05) and achieved similar sensitivity to quantitative reverse-transcription polymerase chain reaction (RT-qPCR; 1 plaque-forming unit per reaction). Moreover, gLAMP demonstrated a high level of tolerance against inhibitors naturally present in wastewater, in which RT-qPCR was completely inhibited. Besides MS2, gLAMP can also be used for the quantification of other microbial targets (e.g., Escherichia coli and Salmonella). Considering its simplicity, sensitivity, rapidity, and versatility, gLAMP holds great potential for microbial water-quality analysis, especially in resource-limited settings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom