z-logo
open-access-imgOpen Access
Chronic Toxicity of Binary Mixtures of Six Metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the Great Pond Snail Lymnaea stagnalis
Author(s) -
Anne Crémazy,
Kevin V. Brix,
Chris M. Wood
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.7b06554
Subject(s) - lymnaea stagnalis , lymnaea , toxicity , environmental chemistry , metal , chronic toxicity , metal toxicity , chemistry , snail , biotic ligand model , cadmium , copper , toxicology , heavy metals , ecotoxicology , biology , ecology , organic chemistry
Although metal-mixture toxicity has recently received increasing attention, there is still insufficient knowledge on joint effects occurring in chronic exposures to relatively low metal concentrations. We characterized the chronic toxicity of binary mixtures of six metals (Ag, Cd, Cu, Ni, Pb, and Zn) in 14 day growth tests with juveniles of the metal-sensitive freshwater snail Lymnaea stagnalis. Observations were compared with predictions from individual metals and from the two most frequently used mixture models: concentration addition (CA) and independent action (IA). Predictions based on measured total dissolved concentrations and on calculated free-ion activities did not differ greatly because multimetal geochemical interactions in the tests were limited. In around half of the tests, mixture toxicity was higher than the greatest effect caused by the individual metals, arguing in favor of considering joint effects. When the additive models were used, the great majority of interactions were either additive or less than additive (i.e., antagonism). In general, the IA model was the most accurate, while the CA model was the most conservative. Along with other studies, these findings suggest that, at least for binary combinations, the simple CA model may provide satisfactory protection from the chronic metal toxicity of metal mixtures to aquatic organisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom