z-logo
open-access-imgOpen Access
Molecular Insights into Arctic Soil Organic Matter Degradation under Warming
Author(s) -
Hongmei Chen,
Ziming Yang,
Rosalie Chu,
Nikola Tolić,
Liyuan Liang,
David E. Graham,
Stan D. Wullschleger,
Baohua Gu
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.7b05469
Subject(s) - environmental chemistry , chemistry , organic matter , soil water , tundra , soil organic matter , incubation , total organic carbon , anoxic waters , soil carbon , lignin , arctic , soil science , environmental science , ecology , organic chemistry , biology , biochemistry
Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. Using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH 4 HCO 3 from both the organic- and mineral-layer soils during incubation at both -2 and 8 °C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classes of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom