z-logo
open-access-imgOpen Access
Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event
Author(s) -
Peng Lin,
Nir Bluvshtein,
Yi Rudich,
Sergey A. Nizkorodov,
Julia Laskin,
Alexander Laskin
Publication year - 2017
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.7b02276
Subject(s) - chromophore , chemistry , biomass burning , aerosol , absorption (acoustics) , solvent , absorption spectroscopy , photochemistry , environmental chemistry , molar absorptivity , analytical chemistry (journal) , organic chemistry , materials science , optics , physics , composite material
Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds (NAC), comprising 28 elemental formulas of at least 63 structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (>400 nm) by solvent extractable BrC. The results highlight that NAC, in particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of •NO 3 and N 2 O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom