z-logo
open-access-imgOpen Access
Enrofloxacin Transformation on Shewanella oneidensis MR-1 Reduced Goethite during Anaerobic–Aerobic Transition
Author(s) -
Wei Yan,
Jianfeng Zhang,
Chuanyong Jing
Publication year - 2016
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.6b03054
Subject(s) - goethite , shewanella oneidensis , chemistry , enrofloxacin , adsorption , environmental chemistry , shewanella , electron paramagnetic resonance , organic chemistry , antibiotics , bacteria , ciprofloxacin , nuclear magnetic resonance , biochemistry , biology , genetics , physics
Antibiotics pollution has become a critical environmental issue worldwide due to its high ecological risk. In this study, rapid degradation of enrofloxacin (ENR) was observed on goethite in the presence of Shewanella oneidensis MR-1 during the transition from anaerobic to aerobic conditions. The abiotic reactions also demonstrated that over 70% with initial concentration of 10 mg L -1 ENR was aerobically removed within 5 min by goethite with adsorbed Fe(II), without especial irradiation and strong oxidants. The results of spin trap electron spin resonance (ESR) experiments provide evidence that Fe(II)/Fe(III) complexes facilitate the generation of •OH. The electrophilic attack by •OH opens the quinolone ring of ENR and initiates further transformation reactions. Five transformation products were identified using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and the ENR degradation process was proposed accordingly. The identification of ENR transformation products also revealed that both the surface adsorption and the electron density distribution in the molecule determined the reactive site and transformation pathway. This study highlights an important, but often underappreciated, natural process for in situ degradation of antibiotics. With the easy migration of the goethite-MR-1 complex to the anaerobic/aerobic interface, the environmental fates of ENR and other antibiotics need to be seriously reconsidered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom