Thermochemical Formation of Polybrominated Dibenzo-p-Dioxins and Dibenzofurans Mediated by Secondary Copper Smelter Fly Ash, and Implications for Emission Reduction
Author(s) -
Mei Wang,
Guorui Liu,
Xiaoxu Jiang,
Minghui Zheng,
Lili Yang,
Yuyang Zhao,
Rong Jin
Publication year - 2016
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.6b02119
Subject(s) - environmental chemistry , fly ash , copper , polybrominated diphenyl ethers , polybrominated biphenyls , environmental science , chemistry , smelting , waste management , pollutant , engineering , organic chemistry
Heterogeneous reactions mediated by fly ash are important to polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) formation. However, the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) through heterogeneous reactions is not yet well understood. Experiments were performed to investigate the thermochemical formation of PBDD/Fs at 150-450 °C through heterogeneous reactions on fly ash from a secondary copper smelter. The maximum PBDD/F concentration was 325 times higher than the initial PBDD/F concentration in the fly ash. The PBDD/F concentration after the experiment at 150 °C was five times higher than the initial concentration. PBDD/Fs have not previously been found to form at such a low temperature. Secondary-copper-smelter fly ash clearly promoted PBDD/F formation, and this conclusion was supported by the low activation energies that were found in Arrhenius's law calculations. Thermochemical formation of PBDD/Fs mediated by fly ash deposited in industrial facilities could explain "memory effects" that have been found for PCDD/Fs and similar compounds released from industrial facilities. Abundant polybrominated diphenyl ethers (PBDEs) that were formed through fly ash-mediated reactions could be important precursors for PBDD/Fs also formed through fly ash-mediated reactions. The amounts of PBDEs that formed through fly ash-mediated reactions suggested that secondary copper smelters could be important sources of reformed PBDEs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom