z-logo
open-access-imgOpen Access
Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets
Author(s) -
Gary A. Bishop,
Donald H. Stedman
Publication year - 2015
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.5b02392
Subject(s) - nox , diesel fuel , gasoline , environmental science , nitrogen oxides , emission inventory , nitrogen oxide , fuel efficiency , environmental engineering , waste management , chemistry , air quality index , engineering , meteorology , automotive engineering , combustion , geography , organic chemistry
Repeated, fuel-specific, emission measurements in Denver (2005/2013), Los Angeles (LA) (2008/2013), and Tulsa (2005/2013) provide long-term trends in on-road reactive nitrogen emissions from three light-/medium-duty U.S. fleets. Reductions in oxides of nitrogen (NOx) emissions ranged from 21% in Denver (from 5.6 ± 1.3 to 4.4 ± 0.2 g of NOx/kg of fuel) to 43% in Tulsa (from 4.4 ± 0.3 to 2.5 ± 0.1 g of NOx/kg of fuel) since 2005, while decreases in fleet ammonia (NH3) emissions ranged from no change in Denver (from 0.45 ± 0.09 to 0.44 ± 0.02 g of NH3/kg of fuel) since 2005 to a 28% decrease in LA (from 0.80 ± 0.02 to 0.58 ± 0.02 g of NH3/kg of fuel) since 2008. The majority of the reduction in gasoline vehicle NOx emissions occurred prior to the full implementation of the Tier II emission standards in 2009. High in-use NOx emissions from small-engine diesel passenger vehicles produced a significant contribution to the fleet means despite their small numbers. NH3 emissions decreased at a slower rate than NOx emissions as a result of modest NH3 emission reduction among the newest vehicles and increased emissions from a growing number of older vehicles with active catalytic converters. In addition, the reactive nitrogen emissions from many new model year vehicles are now dominated by NH3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom