z-logo
open-access-imgOpen Access
Indirect CO2 Emission Implications of Energy System Pathways: Linking IO and TIMES Models for the UK
Author(s) -
Hannah Daly,
Kate Scott,
Neil Strachan,
John Barrett
Publication year - 2015
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.5b01020
Subject(s) - upstream (networking) , fossil fuel , energy supply , greenhouse gas , marginal abatement cost , environmental economics , environmental science , energy system , electricity , energy current , energy (signal processing) , combustion , natural resource economics , electricity generation , environmental engineering , renewable energy , engineering , waste management , economics , power (physics) , telecommunications , ecology , statistics , chemistry , mathematics , electrical engineering , organic chemistry , biology , physics , quantum mechanics
Radical changes to current national energy systems-including energy efficiency and the decarbonization of electricity-will be required in order to meet challenging carbon emission reduction commitments. Technology explicit energy system optimization models (ESOMs) are widely used to define and assess such low-carbon pathways, but these models only account for the emissions associated with energy combustion and either do not account for or do not correctly allocate emissions arising from infrastructure, manufacturing, construction and transport associated with energy technologies and fuels. This paper addresses this shortcoming, through a hybrid approach that estimates the upstream CO2 emissions across current and future energy technologies for the UK using a multiregional environmentally extended input-output model, and explicitly models the direct and indirect CO2 emissions of energy supply and infrastructure technologies within a national ESOM (the UK TIMES model). Results indicate the large significance of nondomestic indirect emissions, particularly coming from fossil fuel imports, and finds that the marginal abatement cost of mitigating all emissions associated with UK energy supply is roughly double that of mitigating only direct emissions in 2050.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom