Identification and Quantification of Microplastics in the Marine Environment Using the Laser Direct Infrared (LDIR) Technique
Author(s) -
Mélanie Ourgaud,
Nam Ngoc Phuong,
Laure Papillon,
Christos Panagiotopoulos,
François Galgani,
Natascha Schmidt,
Vincent Fauvelle,
Christophe Brach-Papa,
Richard Sempéré
Publication year - 2022
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c08870
Subject(s) - microplastics , seawater , sediment , polyethylene , particle size , materials science , chromatography , environmental chemistry , chemistry , biology , ecology , composite material , paleontology
Here, we evaluate for the first time the performances of the newly developed laser direct infrared (LDIR) technique and propose an optimization of the initial protocol for marine microplastics (MPs) analysis. Our results show that an 8 μm porosity polycarbonate filter placed on a Kevley slide enables preconcentration and efficient quantification of MPs, as well as polymer and size determination of reference plastic pellets of polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), with recoveries ranging from 80-100% and negligible blank values for particle sizes ranging from 200 to 500 μm. A spiked experiment using seawater, sediment, mussels, and fish stomach samples showed that the method responded linearly with significant slopes ( R 2 ranging from 0.93-1.0; p < 0.001, p < 0.01). Overall, 11 polymer types were identified with limited handling and an analysis time of ca. 3 h for most samples and 6 h for complex samples. Application of this technique to Mediterranean marine samples (seawater, sediment, fish stomachs and mussels) indicated MP concentrations and size distribution consistent with the literature. A high predominance of PVC (sediment, fish stomachs) and PE and PP (seawater, mussels) was observed in the analyzed samples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom