Unintended Consequences of Air Cleaning Chemistry
Author(s) -
Douglas B. Collins,
Delphine K. Farmer
Publication year - 2021
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c02582
Subject(s) - indoor air quality , environmental science , unintended consequences , pollutant , indoor air , air pollution , waste management , air quality index , air purifier , environmental engineering , chemistry , engineering , mechanical engineering , physics , organic chemistry , meteorology , political science , law , inlet
Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the perhaps unintended consequences of various air cleaning approaches via indoor air chemistry. Introduction of new chemical agents or reactive processes can initiate complex chemistry that results in the release of reactive intermediates and/or byproducts into the indoor environment. Since air cleaning systems are often continuously running to maximize their effectiveness and most people spend a vast majority of their time indoors, human exposure to both primary and secondary products from air cleaners may represent significant exposure risk. This Perspective highlights the need for further study of chemically reactive air cleaning and disinfection methods before broader adoption.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom