z-logo
open-access-imgOpen Access
Developing Surrogate Markers for Predicting Antibiotic Resistance “Hot Spots” in Rivers Where Limited Data Are Available
Author(s) -
Amelie Ott,
Greg O’Donnell,
Ngọc Hân Trần,
Mohd Ridza Mohd Haniffah,
JianQiang Su,
Andrew M. Zealand,
Karina YewHoong Gin,
Michaela L. Goodson,
YongGuan Zhu,
David W. Graham
Publication year - 2021
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c00939
Subject(s) - environmental science , water quality , flagging , antibiotic resistance , drainage basin , hydrology (agriculture) , antibiotics , ecology , biology , microbiology and biotechnology , geography , cartography , geotechnical engineering , engineering
Pinpointing environmental antibiotic resistance (AR) hot spots in low-and middle-income countries (LMICs) is hindered by a lack of available and comparable AR monitoring data relevant to such settings. Addressing this problem, we performed a comprehensive spatial and seasonal assessment of water quality and AR conditions in a Malaysian river catchment to identify potential "simple" surrogates that mirror elevated AR. We screened for resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine water quality parameters, covering absolute concentrations and mass loadings. To understand relationships, we introduced standardized "effect sizes" (Cohen's D) for AR monitoring to improve comparability of field studies. Overall, water quality generally declined and environmental AR levels increased as one moved down the catchment without major seasonal variations, except total antibiotic concentrations that were higher in the dry season (Cohen's D > 0.8, P < 0.05). Among simple surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR gene concentrations (Spearman's ρ 0.81, P < 0.05). We suspect this results from minimally treated sewage inputs, which also contain AR bacteria and genes, depleting DO in the most impacted reaches. Thus, although DO is not a measure of AR, lower DO levels reflect wastewater inputs, flagging possible AR hot spots. DO measurement is inexpensive, already monitored in many catchments, and exists in many numerical water quality models (e.g., oxygen sag curves). Therefore, we propose combining DO data and prospective modeling to guide local interventions, especially in LMIC rivers with limited data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom