Ballast Water Exchange Plus Treatment Lowers Species Invasion Rate in Freshwater Ecosystems
Author(s) -
Johanna Bradie,
David Drake,
Dawson Ogilvie,
Oscar CasasMonroy,
Sarah A. Bailey
Publication year - 2020
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.0c05238
Subject(s) - ballast , freshwater ecosystem , environmental science , ecosystem , environmental chemistry , ecology , chemistry , biology
The movement of ballast water by commercial shipping is a prominent pathway for aquatic invasions. Ships' ballast water management is now transitioning from open ocean exchange to a ballast water performance standard that will effectively require use of onboard treatment systems. Neither strategy is perfect, therefore, combined use of ballast water exchange plus treatment has been suggested to provide greatest protection of aquatic ecosystems. This study compared the performance of exchange plus treatment against treatment alone by modeling establishment rates of nonindigenous zooplankton introduced by ballast water across different habitat types (fresh, brackish, and marine) in Canada. Treatment was modeled under two efficacy scenarios (100% and 50% of ship trips) to consider the possibility that treatment may not always be successful. The model results indicate that exchange plus treatment will be more effective than treatment alone at reducing establishments when recipient ports are freshwater (58 140 vs 11 338 trips until ≥1 establishment occurs, respectively). Exchange plus treatment also serves as an important backup strategy if treatment systems are partially effective (50% of trips), primarily for freshwater recipient ecosystems (1442 versus 585 trips until ≥1 establishment occurs, respectively).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom