Resolution of Racemic Guaifenesin Applying a Coupled Preferential Crystallization-Selective Dissolution Process: Rational Process Development
Author(s) -
Erik Temmel,
Matthias J. Eicke,
Francesca Cascella,
Andreas SeidelMorgenstern,
Heike Lorenz
Publication year - 2019
Publication title -
crystal growth and design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.966
H-Index - 155
eISSN - 1528-7505
pISSN - 1528-7483
DOI - 10.1021/acs.cgd.8b01660
Subject(s) - crystallization , dissolution , enantiomer , enantiopure drug , racemic mixture , chemistry , chemical engineering , supersaturation , chiral resolution , materials science , organic chemistry , enantioselective synthesis , engineering , catalysis
Preferential crystallization is a cost efficient method to provide pure enantiomers from a racemic mixture of a conglomerate forming system. Exploiting small amounts of pure crystals of both enantiomers, several batch or continuous processes were developed, capable of providing both species. However, an intermediate production step has to be used when pure enantiomers are not available. In such cases, partially selective synthesis, chromatography, or crystallization processes utilizing chiral auxiliaries have to be used to provide the initial seed material. Recently, it was shown that a coupled Preferential Crystallization-selective Dissolution process (CPCD) in two coupled crystallizers can be applied if at least one pure enantiomer is available to produce both antipodes within one batch. The corresponding process is carried out in one reactor (crystallization tank) by seeding a racemic supersaturated solution with the available enantiomer at a certain temperature. The second reactor (dissolution tank) contains a saturated racemic suspension at a higher temperature. Both reactors are coupled via the fluid phase, allowing for a selective dissolution of the preferentially crystallizing enantiomer from the solid racemic feed provided in the dissolution vessel. The dissolution and crystallization processes continue until the solid racemic material is completely resolved and becomes enantiopure. At this point, both enantiomers can be harvested in their pure crystalline form. For a specific pharmaceutically relevant case study, a rational process design and the applied empirical optimization procedure will be described. The achieved productivities after optimization show the great potential of this approach also for industrial applications. Also, a strategy to control this process based on inline turbidity measurement will be presented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom