z-logo
open-access-imgOpen Access
Nanoscale Structure–Property Relationships in Low-Temperature Solution-Processed Electron Transport Layers for Organic Photovoltaics
Author(s) -
Jiaqi Zhang,
Maurizio Morbidoni,
Claire H. Burgess,
Jiaying Wu,
Tian Du,
Khallil Harrabi,
David J. Payne,
James R. Durrant,
Martyn A. McLachlan
Publication year - 2017
Publication title -
crystal growth and design
Language(s) - English
Resource type - Journals
eISSN - 1528-7505
pISSN - 1528-7483
DOI - 10.1021/acs.cgd.7b01222
Subject(s) - photovoltaics , nanoscopic scale , organic solar cell , materials science , electron transport chain , nanotechnology , property (philosophy) , electron , chemical physics , optoelectronics , chemical engineering , polymer , chemistry , photovoltaic system , composite material , electrical engineering , engineering , physics , biochemistry , philosophy , epistemology , quantum mechanics
Here we elucidate the nanostructure–property relationships in low-temperature, solution-processed ZnO based thin films employed as novel electron transport layers (ETLs) in organic photovoltaic (OPV) devices. Using a low-cost zinc precursor (zinc acetate) in a simple amine–alcohol solvent mix, high-quality ETL thin films are prepared. We show that at a processing temperature of 110 °C the films are composed of nanoparticles embedded in a continuous organic matrix consisting of ZnO precursor species and stabilizers. Using a combination of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), we study the thermally induced morphological and compositional changes in the ETLs. Transient optoelectronic probes reveal that the mixed nanocrystalline/amorphous nature of the films does not contribute to recombination losses in devices. We propose that charge transport in our low-temperature processed ETLs is facilitated by the network of ZnO nanoparticles, with the organic matrix serving to tune the work function of the ETL and to provide excellent resistance to current leakage. To demonstrate the performance of our ETLs we prepare inverted architecture OPVs utilizing Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7): [6,6]-Phenyl-C71-butyric acid methyl ester (PC71BM) as active layer materials. The low-temperature ETL devices showed typical power conversion efficiencies (PCEs) of >7% with the champion devices achieving a PCE > 8%

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom