z-logo
open-access-imgOpen Access
Protein Frameworks with Thiacalixarene and Zinc
Author(s) -
Ronan J. Flood,
Kiefer O. Ramberg,
Darius B. Mengel,
Francesca Guagnini,
Peter B. Crowley
Publication year - 2022
Publication title -
crystal growth and design
Language(s) - English
Resource type - Journals
eISSN - 1528-7505
pISSN - 1528-7483
DOI - 10.1021/acs.cgd.2c00108
Subject(s) - chemistry , zinc , nanoclusters , metal , histidine , cationic polymerization , crystallography , stereochemistry , biochemistry , polymer chemistry , organic chemistry , amino acid
Controlled protein assembly provides a means to generate biomaterials. Synthetic macrocycles such as the water-soluble sulfonato-calix[n]arenes are useful mediators of protein assembly. Sulfonato-thiacalix[4]arene ( tsclx 4 ), with its metal-binding capacity, affords the potential for simultaneous macrocycle- and metal-mediated protein assembly. Here, we describe the tsclx 4 -/Zn-directed assembly of two proteins: cationic α-helical cytochrome c (cyt c ) and neutral β-propeller Ralstonia solanacearum lectin (RSL). Two co-crystal forms were obtained with cyt c , each involving multinuclear zinc sites supported by the cone conformation of tsclx 4 . The tsclx 4 /Zn cluster acted as an assembly node via both lysine encapsulation and metal-mediated protein-protein contacts. In the case of RSL, tsclx 4 adopted the 1,2-alternate conformation and supported a dinuclear zinc site with concomitant encapsulation and metal-binding of two histidine side chains. These results, together with the knowledge of thiacalixarene/metal nanoclusters, suggest promising applications for thiacalixarenes in biomaterials and MOF fabrication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom