
Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine
Author(s) -
Jiasong Li,
Teruaki Koto,
Ian Davis,
Aimin Liu
Publication year - 2019
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.9b00006
Subject(s) - cysteine , cofactor , chemistry , biogenesis , heme , stereochemistry , dioxygenase , active site , tyrosine , rubredoxin , hydroxylation , biocatalysis , enzyme , biochemistry , catalysis , reaction mechanism , gene
Cysteine dioxygenase (CDO) is a nonheme iron enzyme that adds two oxygen atoms from dioxygen to the sulfur atom of l-cysteine. Adjacent to the iron site of mammalian CDO, there is a post-translationally generated Cys-Tyr cofactor, whose presence substantially enhances the oxygenase activity. The formation of the Cys-Tyr cofactor in CDO is an autocatalytic process, and it is challenging to study by traditional techniques because the cross-linking reaction is a side, uncoupled, single-turnover oxidation buried among multiple turnovers of l-cysteine oxygenation. Here, we take advantage of our recent success in obtaining a purely uncross-linked human CDO due to site-specific incorporation of 3,5-difluoro-l-tyrosine (F 2 -Tyr) at the cross-linking site through the genetic code expansion strategy. Using EPR spectroscopy, we show that nitric oxide ( • NO), an oxygen surrogate, similarly binds to uncross-linked F 2 -Tyr157 CDO as in wild-type human CDO. We determined X-ray crystal structures of uncross-linked F 2 -Tyr157 CDO and mature wild-type CDO in complex with both l-cysteine and • NO. These structural data reveal that the active site cysteine (Cys93 in the human enzyme), rather than the generally expected tyrosine (i.e., Tyr157), is well-aligned to be oxidized should the normal oxidation reaction uncouple. This structure-based understanding is further supported by a computational study with models built on the uncross-linked ternary complex structure. Together, these results strongly suggest that the first target to oxidize during the iron-assisted Cys-Tyr cofactor biogenesis is Cys93. Based on these data, a plausible reaction mechanism implementing a cysteine radical involved in the cross-link formation is proposed.