Discovery of a Heparan Sulfate 3-O-Sulfation Specific Peeling Reaction
Author(s) -
Yu Huang,
Yang Mao,
Chengli Zong,
Cheng Lin,
GeertJan Boons,
Joseph Zaia
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac503248k
Subject(s) - sulfation , chemistry , heparan sulfate , glucosamine , heparin , biochemistry , sulfate , antithrombin , enzyme , glycosaminoglycan , stereochemistry , organic chemistry
Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases mentioned above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here we describe a novel peeling reaction that specifically degrades HS chains with 3-O-sulfated glucosamine at the reducing-end. When HS/heparin is enzymatically depolymerized for compositional analysis, 3-O-sulfated glucosamine at the reducing ends appears to be susceptible to degradation under mildly basic conditions. We propose a 3-O-desulfation initiated peeling reaction mechanism based on the intermediate and side-reaction products observed. Our discovery calls for the re-evaluation of the natural abundance and functions of HS 3-O-sulfation by taking into consideration the negative impact of this novel peeling reaction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom