Measuring Localized Redox Enzyme Electron Transfer in a Live Cell with Conducting Atomic Force Microscopy
Author(s) -
Lital Alfonta,
Brian Meckes,
Liron Amir,
Orr Schlesinger,
Srinivasan Ramachandran,
Ratnesh Lal
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac5015645
Subject(s) - electron transfer , chemistry , redox , electrochemistry , biosensor , bioelectronics , electrode , nanotechnology , inorganic chemistry , biochemistry , photochemistry , materials science
Bacterial systems are being extensively studied and modified for energy, sensors, and industrial chemistry; yet, their molecular scale structure and activity are poorly understood. Designing efficient bioengineered bacteria requires cellular understanding of enzyme expression and activity. An atomic force microscope (AFM) was modified to detect and analyze the activity of redox active enzymes expressed on the surface of E. coli. An insulated gold-coated metal microwire with only the tip conducting was used as an AFM cantilever and a working electrode in a three-electrode electrochemical cell. Bacteria were engineered such that alcohol dehydrogenase II (ADHII) was surface displayed. A quinone, an electron transfer mediator, was covalently attached site specifically to the displayed ADHII. The AFM probe was used to lift a single bacterium off the surface for electrochemical analysis in a redox-free buffer. An electrochemical comparison between two quinone containing mutants with different distances from the NAD(+) binding site in alcohol dehydrogenase II was performed. Electron transfer in redox active proteins showed increased efficiency when mediators are present closer to the NAD(+) binding site. This study suggests that an integrated conducting AFM used for single cell electrochemical analysis would allow detailed understanding of enzyme electron transfer processes to electrodes, the processes integral to creating efficiently engineered biosensors and biofuel cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom