z-logo
open-access-imgOpen Access
Adaptive Use of Bubble Wrap for Storing Liquid Samples and Performing Analytical Assays
Author(s) -
David K. Bwambok,
Dionysios C. Christodouleas,
Stephen A. Morin,
Heiko Lange,
Scott T. Phillips,
George M. Whitesides
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac501206m
Subject(s) - cuvette , bubble , chemistry , pipette , absorbance , syringe , nanotechnology , chromatography , optics , mechanics , materials science , mechanical engineering , physics , engineering
This paper demonstrates that the gas-filled compartments in the packing material commonly called "bubble wrap" can be repurposed in resource-limited regions as containers to store liquid samples, and to perform bioanalyses. The bubbles of bubble wrap are easily filled by injecting the samples into them using a syringe with a needle or a pipet tip, and then sealing the hole with nail hardener. The bubbles are transparent in the visible range of the spectrum, and can be used as "cuvettes" for absorbance and fluorescence measurements. The interiors of these bubbles are sterile and allow storage of samples without the need for expensive sterilization equipment. The bubbles are also permeable to gases, and can be used to culture and store micro-organisms. By incorporating carbon electrodes, these bubbles can be used as electrochemical cells. This paper demonstrates the capabilities of the bubbles by culturing E. coli, growing C. elegans, measuring glucose and hemoglobin spectrophotometrically, and measuring ferrocyanide electrochemically, all within the bubbles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom