z-logo
open-access-imgOpen Access
Quantification of High-Resolution 1H-[13C] NMR Spectra from Rat Brain Extracts
Author(s) -
Robin A. de Graaf,
Golam M. I. Chowdhury,
Kevin L. Behar
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac5006926
Subject(s) - chemistry , spectral line , carbon 13 nmr , isotope , nuclear magnetic resonance spectroscopy , nuclear magnetic resonance , nmr spectra database , spectral resolution , analytical chemistry (journal) , chemical shift , multiplet , in vivo , resolution (logic) , carbon 13 , molecule , chromatography , stereochemistry , organic chemistry , nuclear physics , physics , microbiology and biotechnology , astronomy , artificial intelligence , computer science , biology
NMR spectroscopy in combination with (13)C-labeled substrate infusion is a unique technique to obtain information about dynamic metabolic fluxes noninvasively in vivo. In many cases, the in vivo information content obtained during dynamic (13)C studies in rodents can be enhanced by high-resolution (1)H-[(13)C] NMR spectroscopy on brain extracts. Previously, it has been shown that (1)H NMR spectra from rat brain extracts can be accurately quantified with a spectral fitting routine utilizing simulated basis sets using complete prior knowledge of chemical shifts and scalar couplings. The introduction of (13)C label into the various metabolites presents complications that demand modifications of the spectral fitting routine. As different multiplets within a given molecule accumulate various amounts of (13)C label, the fixed amplitude relationship between multiplets typical for (1)H NMR spectra must be abandoned. In addition, (13)C isotope effects lead to spectral multiplet patterns that become dependent on the amount of (13)C label accumulation, thereby preventing the use of a common basis set. Here a modified spectral fitting routine is presented that accommodates variable (13)C label accumulation and (13)C isotope effects. Spectral fitting results are quantitatively compared to manual integration on column-separated samples in which spectral overlap is minimized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom