z-logo
open-access-imgOpen Access
Improved Reagents for Newborn Screening of Mucopolysaccharidosis Types I, II, and VI by Tandem Mass Spectrometry
Author(s) -
Naveen Kumar Chennamaneni,
Arun Kumar,
Mariana Bárcenas,
Zdeněk Spáčil,
C. Ronald Scott,
František Tureček,
Michael H. Gelb
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac5004135
Subject(s) - chemistry , mucopolysaccharidosis , tandem mass spectrometry , newborn screening , mucopolysaccharidosis i , chromatography , multiplex , mass spectrometry , reagent , enzyme , enzyme replacement therapy , biochemistry , organic chemistry , bioinformatics , medicine , disease , biology
Tandem mass spectrometry for the multiplex and quantitative analysis of enzyme activities in dried blood spots on newborn screening cards has emerged as a powerful technique for early assessment of lysosomal storage diseases. Here we report the design and process-scale synthesis of substrates for the enzymes α-l-iduronidase, iduronate-2-sulfatase, and N-acetylgalactosamine-4-sulfatase that are used for newborn screening of mucopolysaccharidosis types I, II, and VI. The products contain a bisamide unit that is hypothesized to readily protonate in the gas phase, which improves detection sensitivity by tandem mass spectrometry. The products contain a benzoyl group, which provides a useful site for inexpensive deuteration, thus facilitating the preparation of internal standards for the accurate quantification of enzymatic products. Finally, the reagents are designed with ease of synthesis in mind, thus permitting scale-up preparation to support worldwide newborn screening of lysosomal storage diseases. The new reagents provide the most sensitive assay for the three lysosomal enzymes reported to date as shown by their performance in reactions using dried blood spots as the enzyme source. Also, the ratio of assay signal to that measured in the absence of blood (background) is superior to all previously reported mucopolysaccharidosis types I, II, and VI assays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom