Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies: I. Electrospray Spectra of 2-Ring Isomers
Author(s) -
Jay G. Forsythe,
Sarah M. Stow,
Hartmut Nefzger,
Nicholas W. Kwiecien,
Jody C. May,
John A. McLean,
David M. Hercules
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac5001652
Subject(s) - chemistry , structural isomer , tandem mass spectrometry , protonation , mass spectrometry , electrospray ionization , ion mobility spectrometry , electrospray , isobaric labeling , tandem , computational chemistry , chromatography , analytical chemistry (journal) , protein mass spectrometry , ion , stereochemistry , organic chemistry , materials science , composite material
Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom