Real Time Observation of X-ray-Induced Surface Modification Using Simultaneous XANES and XEOL-XANES
Author(s) -
Annemie Adriaens,
Paul D. Quinn,
Sergey I. Nikitenko,
Mark Dowsett
Publication year - 2013
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac401646q
Subject(s) - xanes , materials science , analytical chemistry (journal) , microbeam , absorption (acoustics) , x ray , excited state , x ray photoelectron spectroscopy , chemistry , optics , spectroscopy , atomic physics , chemical engineering , composite material , physics , chromatography , quantum mechanics , engineering
In experiments preliminary to the design of an X-ray-excited optical luminescence (XEOL)-based chemical mapping tool we have used X-ray micro (4.5 × 5.2 μm) and macro (1 × 6 mm) beams with similar total fluxes to assess the effects of a high flux density beam of X-rays at energies close to an absorption edge on inorganic surfaces in air. The near surface composition of corroded cupreous alloys was analyzed using parallel X-ray and optical photoemission channels to collect X-ray absorption near-edge structure (XANES) data at the Cu K edge. The X-ray fluorescence channel is characteristic of the composition averages over several micrometers into the surface, whereas the optical channel is surface specific to about 200 nm. While the X-ray fluorescence data were mostly insensitive to the X-ray dose, the XEOL-XANES data from the microbeam showed significant dose-dependent changes to the superficial region, including surface cleaning, changes in the oxidation state of the copper, and destruction of surface compounds responsible for pre-edge fluorescence or phosphorescence in the visible. In one case, there was evidence that the lead phase in a bronze had melted. Conversely, data from the macrobeam were stable over several hours. Apart from localized heating effects, the microbeam damage is probably associated with the O3 loading of the surface and increased reaction rate with atmospheric water vapor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom