Aptamer-Based Impedimetric Sensor for Bacterial Typing
Author(s) -
Mahmoud Labib,
Anna S. Zamay,
Olga S. Kolovskaya,
И. Т. Решетнева,
Galina S. Zamay,
Richard Kibbee,
Syed A. Sattar,
Tatia. Zamay,
Maxim V. Berezovski
Publication year - 2012
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac302217u
Subject(s) - aptamer , salmonella enteritidis , chemistry , salmonella , systematic evolution of ligands by exponential enrichment , escherichia coli , citrobacter freundii , pseudomonas aeruginosa , bacteria , typing , microbiology and biotechnology , enterobacteriaceae , biology , biochemistry , gene , rna , genetics
The development of an aptamer-based impedimetric sensor for typing of bacteria (AIST-B) is presented. Highly specific DNA aptamers to Salmonella enteritidis were selected via Cell-SELEX technique. Twelve rounds of selection were performed; each comprises a positive selection step against S. enteritidis and a negative selection step against a mixture of related pathogens, including Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii, to ensure the species-specificity of the selected aptamers. After sequencing of the pool showing the highest binding affinity to S. enteritidis, a DNA sequence of high affinity to the bacteria was integrated into an impedimetric sensor via self-assembly onto a gold nanoparticles-modified screen-printed carbon electrode (GNPs-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. enteritidis down to 600 CFU mL(-1) (equivalent to 18 CFU in 30 μL assay volume) in 10 min and distinguish it from other Salmonella species, including S. typhimurium and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based typing of a variety of microorganisms using a rapid, economic, and label-free electrochemical platform.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom