Fluorescence Anisotropy Reduction of Allosteric Aptamer for Sensitive and Specific Protein Signaling
Author(s) -
Dapeng Zhang,
Qiang Zhao,
Bailin Zhao,
Hailin Wang
Publication year - 2012
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac3004133
Subject(s) - aptamer , chemistry , thrombin , fluorescence , fluorescence anisotropy , biophysics , signal transduction , transduction (biophysics) , allosteric regulation , biochemistry , platelet , chromatography , microbiology and biotechnology , enzyme , physics , quantum mechanics , membrane , immunology , biology
Real time protein signaling in a complex medium may provide a promising way for high-throughput protein analysis, but it is largely unmet due to the challenge of signal transduction and the interferences of nonspecific binding and high background. Our recent work indicates that a fluorescent aptamer can display a protein binding-induced reduction of fluorescence anisotropy (FA) (Zhang, D.; Lu, M.; Wang, H. J. Am. Chem. Soc. 2011, 133, 9188-9191), which is exclusively different from a traditionally simplified concept hinting a molecular size increase-induced FA increase. Inspired by this unexpected observation, we describe a novel FA reduction approach for protein signaling. The feasibility of this approach is demonstrated through the assays of a blood protein human α-thrombin and an oncoprotein human platelet-derived growth factor B-chain (PDGF-BB) using two screened fluorescent aptamers, respectively. By the developed FA reduction method, the spiked human α-thrombin in diluted serum can be detected at the concentration as low as 250 pM. In contrast, in a traditional molecular size-dependent FA assay, the thrombin spiked in diluted serum cannot induce reliable FA change even at a 256-fold higher concentration (64 nM). The results clearly show that the FA reduction approach has a dramatically enhanced specificity against target protein and high sensitivity in complex medium and is applicable to the no-separation based detection of proteins in biological matrixes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom