z-logo
open-access-imgOpen Access
Regeneration of Pyrolyzed Photoresist Film by Heat Treatment
Author(s) -
Andrew J. Gross,
Alison J. Downard
Publication year - 2011
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac103264v
Subject(s) - x ray photoelectron spectroscopy , photoresist , chemistry , pyrolysis , contact angle , electrochemistry , chemical engineering , electrode , analytical chemistry (journal) , thin film , surface roughness , nanotechnology , organic chemistry , composite material , materials science , layer (electronics) , engineering
A simple, time-, and cost-effective procedure is described for regenerating film-modified or deactivated pyrolyzed photoresist film (PPF) surfaces. Heating for 30 min at 545 ± 25 °C in argon at a flow rate of 1 L min(-1) removes covalently bound thin organic films, attached via electrografting from aryldiazonium salt solutions. The heat-treated surfaces exhibit improved electrochemical characteristics compared to those prior to modification and can be reused for solution-based electrochemical measurements and for electrografting. The same treatment reactivates PPF electrodes that have been deactivated by exposure to adsorbates from air or solution. X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements establish that the regeneration procedure does not lead to significant changes in oxygen content, roughness, or hydrophobicity of PPF surfaces. XPS measurements also confirm the complete removal of covalently attached organic films after heat treatment but reveal a specific interaction between grafted nitrophenyl films and PPF which results in a small amount of N incorporation in the surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom