z-logo
open-access-imgOpen Access
Peptide Labeling with Isobaric Tags Yields Higher Identification Rates Using iTRAQ 4-Plex Compared to TMT 6-Plex and iTRAQ 8-Plex on LTQ Orbitrap
Author(s) -
Peter Pichler,
Thomas Köcher,
Johann Holzmann,
Michael Mazanek,
Thomas Taus,
Gustav Ammerer,
Karl Mechtler
Publication year - 2010
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac100890k
Subject(s) - orbitrap , chemistry , isobaric labeling , peptide , isobaric process , shotgun proteomics , chromatography , peptide fragment , mass spectrometry , quantitative proteomics , tandem mass tag , proteomics , tandem mass spectrometry , computational biology , biochemistry , protein mass spectrometry , physics , biology , gene , thermodynamics
Peptide labeling with isobaric tags has become a popular technique in quantitative shotgun proteomics. Using two different samples viz. a protein mixture and HeLa extracts, we show that three commercially available isobaric tags differ with regard to peptide identification rates: The number of identified proteins and peptides was largest with iTRAQ 4-plex, followed by TMT 6-plex, and smallest with iTRAQ 8-plex. In all experiments, we employed a previously described method where two scans were acquired for each precursor on an LTQ Orbitrap: A CID scan under standard settings for identification, and a HCD scan for quantification. The observed differences in identification rates were similar when data was searched with either Mascot or Sequest. We consider these findings to be the result of a combination of several factors, most notably prominent ions in CID spectra as a consequence of loss of fragments of the label tag from precursor ions. These fragment ions cannot be explained by current search engines and were observed to have a negative impact on peptide scores.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom