z-logo
open-access-imgOpen Access
Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor
Author(s) -
ChihChing Huang,
ShengHsien Chiu,
YuFen Huang,
HuanTsung Chang
Publication year - 2007
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac0707075
Subject(s) - aptamer , chemistry , colloidal gold , fluorescence , platelet derived growth factor receptor , turn (biochemistry) , receptor , biophysics , nanoparticle , nanotechnology , growth factor , microbiology and biotechnology , biochemistry , materials science , physics , quantum mechanics , biology
An aptamer modified gold nanoparticles (Apt-AuNPs) based molecular light switching sensor has been demonstrated for the analysis of breast cancer markers (platelet-derived growth factors (PDGFs) and their receptors) in homogeneous solutions. The PDGF binding aptamer has a unique structure with triple-helix conformation that allows N,N-dimethyl-2,7-diazapyrenium dication (DMDAP) and PDGF bindings. The fluorescence of DMDAP is almost completely quenched by Apt-AuNPs when it intercalates with the aptamers. Owing to high magnitudes of increases (up to 40-fold) in the turn-on fluorescence signals of DMDAP/Apt-AuNP upon PDGFs binding, the approach is highly sensitive for the detection of PDGFs. The DMDAP/Apt-AuNP probe specifically and sensitively detected PDGFs under optimal concentrations of salts and DMDAP. We also demonstrated that the Apt-AuNPs are effective selectors for enrichment of PDGF-AA from large-volume samples. The approach allows detection of PDGF-AA at a concentration down to 8 pM, showing better sensitivity than other signal aptamers. By conducting a competitive assay, we demonstrated the determination of PDGF receptor-alpha with LOD of 0.25 nM when using the DMDAP/Apt-AuNP as a probe.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom