Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array
Author(s) -
Haixin Chang,
Ying Yuan,
Nanlin Shi,
Yifu Guan
Publication year - 2007
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac070639m
Subject(s) - chemistry , polyaniline , electrochemistry , biosensor , nanotechnology , nanotube , conductive polymer , dna , chemical engineering , carbon nanotube , electrode , polymer , organic chemistry , biochemistry , polymerization , materials science , engineering
Most of the recent developments in ultrasensitive detection of nucleic acid are based on the gold nanoparticles and carbon nanotubes as a medium of signal amplification. Here, we present an ultrasensitive electrochemical nucleic acid biosensor using the conducting polyaniline (PANI) nanotube array as the signal enhancement element. The PANI nanotube array of a highly organized structure was fabricated under a well-controlled nanoscale dimension on the graphite electrode using a thin nanoporous layer as a template, and 21-mer oligonucleotide probes were immobilized on these PANI nanotubes. In comparison with gold nanoparticle- or carbon nanotube-based DNA biosensors, our PANI nanotube array-based DNA biosensor could achieve similar sensitivity without catalytic enhancement, purification, or end-opening processing. The electrochemical results showed that the conducting PANI nanotube array had a signal enhancement capability, allowing the DNA biosensor to readily detect the target oligonucleotide at a concentration as low as 1.0 fM (approximately 300 zmol of target molecules). In addition, this biosensor demonstrated good capability of differentiating the perfect matched target oligonucleotide from one-nucleotide mismatched oligonucleotides even at a concentration of 37.59 fM. This detection specificity indicates that this biosensor could be applied to single-nucleotide polymorphism analysis and single-mutation detection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom