Equilibrium Sampling of Freely Dissolved Alkylphenols into a Thin Film of 1-Octanol Supported on a Hollow Fiber Membrane
Author(s) -
Jingfu Liu,
Xialin Hu,
Jinfeng Peng,
Jan Åke Jönsson,
Philipp Mayer,
Guibin Jiang
Publication year - 2006
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac0615145
Subject(s) - chemistry , partition coefficient , chromatography , microporous material , dissolved organic carbon , octanol , extraction (chemistry) , membrane , fiber , nonylphenol , effluent , analytical chemistry (journal) , environmental chemistry , organic chemistry , environmental engineering , biochemistry , engineering
A new negligible depletion extraction procedure was proposed for equilibrium sampling of 4-tert-octylphenol (OP) and 4-nonylphenol (NP) into a thin film of 1-octanol supported on a hollow fiber membrane. This thin liquid film extraction technique was directed at the determination of (1) freely dissolved concentrations, (2) distribution coefficients to 1-octanol (D(ow)), and (3) binding to dissolved organic matter (DDOC). The sampling device was prepared by dipping pieces of polypropylene microporous hollow fiber membrane (10-mm length, 30-microm wall thickness, 240-microm inner diameter) into 1-octanol for a few seconds to impregnate the pores of the hollow fiber wall. After stirring in 100 mL of sample solution for 24 h, the sampling device was harvested and desorbed with 30 microL of methanol, of which 20 microL was injected for HPLC analysis. With the measured D(ow) of a chemical and its equilibrium concentration in the 1-octanol sampling phase (C(octanol)), the freely dissolved concentration (Cfree) was calibrated based on Cfree = C(octanol)/D(ow). Measured log Dow values of OP (4.32 +/- 0.06) and NP (4.79 +/- 0.02) were independent of the chemical concentration, only minimally affected by the environmentally relevant pH, buffering capacity, and salinity of samples, and agreed well with reported values. Log DDOC values of OP (4.89 +/- 0.43) and NP (5.14 +/- 0.37), determined in Aldrich humic acid solution, agreed with reported partition coefficients to organic carbon (log Koc) for particles in river water and effluent wastewater. Short equilibration times and high enrichment factors were obtained for both analytes due to the high surface to volume ratio of the new sampler. The technique was successfully applied to determine Cfree of OP and NP in real water samples and to study their association with humic acids and bovine albumin.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom