A LC/APCI-MS/MS Method for Analysis of Imidacloprid in Soils, in Plants, and in Pollens
Author(s) -
J.M. Bonmatin,
I. Moineau,
R. Charvet,
C. Fléché,
M. Colin,
E. Bengsch
Publication year - 2003
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac020600b
Subject(s) - imidacloprid , chemistry , chromatography , detection limit , sunflower , pesticide , soil water , extraction (chemistry) , toxicology , environmental chemistry , horticulture , agronomy , environmental science , biology , soil science
Imidacloprid, the most used systemic insecticide, is suspected of having harmful effects on honeybees at nanogram per bee or at microgram per kilogram levels. However, there is a lack of methodology to detect imidacloprid and its metabolites at such low levels. We developed a method for the determination of low amounts of imidacloprid in soils, plants (leaves and flowers), and pollens by using HPLC coupled to tandem mass spectrometry (APCI-MS/MS). Extraction, separation, and detection were performed according to quality assurance criteria, to Good Laboratory Practice, and to criteria from the directive 96/23/EC, which is designed for banned substances. The linear range of application is 0.5-20 microg/kg imidacloprid in soils, in plants, and in pollens, with a relative standard deviation of 2.9% at 1 microg/kg. The limits of detection and of quantification are LOD = 0.1 microg/kg and LOQ = 1 microg/kg, respectively. For the first time, this study permitted us to follow the fate of imidacloprid in the environment. When treated, flowers of sunflower and maize contain average values of approximately 10 microg/kg imidacloprid. This explains that pollens from these crops are contaminated at levels of a few micrograms per kilogram, suggesting probable deleterious effects on honeybees.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom