z-logo
open-access-imgOpen Access
Input–output measures for model reduction and closed-loop control: application to global modes
Author(s) -
Alexandre Barbagallo,
Denis Sipp,
Peter J. Schmid
Publication year - 2011
Publication title -
journal of fluid mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 226
eISSN - 1469-7645
pISSN - 0022-1120
DOI - 10.1017/jfm.2011.271
Subject(s) - control theory (sociology) , reduction (mathematics) , transfer function , closed loop transfer function , computer science , robustness (evolution) , basis (linear algebra) , galerkin method , stability (learning theory) , modal , mathematics , control (management) , physics , finite element method , biochemistry , chemistry , geometry , artificial intelligence , machine learning , polymer chemistry , electrical engineering , gene , engineering , thermodynamics
International audienceFeedback control applications for flows with a large number of degrees of freedom require the reduction of the full flow model to a system with significantly fewer degrees of freedom. This model-reduction process is accomplished by Galerkin projections using a reduction basis composed of modal structures that ideally preserve the input-output behaviour between actuators and sensors and ultimately result in a stabilized compensated system. In this study, global modes are critically assessed as to their suitability as a reduction basis, and the globally unstable, two-dimensional flow over an open cavity is used as a test case. Four criteria are introduced to select from the global spectrum the modes that are included in the reduction basis. Based on these criteria, four reduced-order models are tested by computing open-loop (transfer function) and closed-loop (stability) characteristics. Even though weak global instabilities can be suppressed, the concept of reduced-order compensators based on global modes does not demonstrate sufficient robustness to be recommended as a suitable choice for model reduction in feedback control applications. The investigation also reveals a compelling link between frequency-restricted input-output measures of open-loop behaviour and closed-loop performance, which suggests the departure from mathematically motivated H-measures for model reduction toward more physically based norms; a particular frequency-restricted input-output measure is proposed in this study which more accurately predicts the closed-loop behaviour of the reduced-order model and yields a stable compensated system with a markedly reduced number of degrees of freedom. © 2011 Cambridge University Press

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom