z-logo
open-access-imgOpen Access
Endgroup-assisted siloxane bond cleavage in the gas phase
Author(s) -
Huiping Chen
Publication year - 2003
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1016/s1044-0305(03)00400-8
Subject(s) - chemistry , fourier transform ion cyclotron resonance , silanol , dissociation (chemistry) , siloxane , bond cleavage , fragmentation (computing) , hydrogen bond , mass spectrometry , collision induced dissociation , deuterium , ion , computational chemistry , photochemistry , tandem mass spectrometry , molecule , organic chemistry , catalysis , polymer , physics , chromatography , quantum mechanics , computer science , operating system
Unimolecular dissociation of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) generates SiC(5)H(16)NO(+) and SiC(5)H(14)N(+). The formation of SiC(5)H(16)NO(+) involves dissociation of a Si[bond]O bond and formation of an O[bond]H bond through rearrangement. The fragmentation mechanism was investigated utilizing ab initio calculations and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in combination with hydrogen/deuterium (H/D) exchange reactions. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) studies of the fully deuterated ion D(2)N(CH(2))(3)SiOSi(CH(2))(3)ND(3)(+) provided convincing evidence for a backbiting mechanism which involves hydrogen transfer from the terminal amine group to the oxygen to form a silanol-containing species. Theoretical calculations indicated decomposition of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) through a backbiting mechanism is the lowest energy decomposition channel, compared with other alternative routes. Two mechanisms were proposed for the fragmentation process which leads to the siloxane bond cleavage and the SORI-CID results of partially deuterated precursor ions suggest both mechanisms should be operative. Rearrangement to yield a silanol-containing product ion requires end groups possessing a labile hydrogen atom. Decomposition of disiloxane ions with end groups lacking labile hydrogen atoms yielded product ions from direct bond cleavages.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here